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In this paper a procedure for the numerical solution of convolution-type integral 
equations is presented. The method uses a spectral representation of a transformed- 
convolution operator and can be used to solve convolution equations with causal or 
noncausal kernels. The formalism has the additional property of being both intuitively 
structured and well-suited for direct numerical computation. 

1. INTRODUCTION 

A computational problem which arises frequently in mathematical and experi- 
mental physics is that of solving linear integral equations of the first kind over a 
finite interval. Fredholm and Volterra type integral equations of this form are, 
respectively, 

r(t) = I’ k(t, T) X(T) dT, t E b, bl (1) 
a 

and 

r(t) = 1’ k(t, 7) X(T) dr, t E [a, b]. (2) 
a 

From an applications viewpoint, an important class of such equations involves 
difference kernels, that is, the kernel k(t, T) depends on the difference of its 
arguments: 

k(t, T) = k(t - T). (3) 

Such integral equations are called convolutions and the process of solving (1) 
or (2) for x(t) given knowledge of r(t) and k(t) is appropriately called deconvolution. 
Areas of application where the deconvolution problem occurs are applied optics [l], 
geophysics [2], communication theory [3], and applied electromagnetics [4]. 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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Solving Fredholm and Volterra equations of the first kind is ditI$ult because of 
the well-known inherent ill-conditioning of the problem. For kernels that occur 
in physical applications, small variations in x(t) cause practically indistinguishable 
variations in r(t); however, the converse of this statement is false in rather spec- 
tacular ways [since arbitrarily small variations in r(t) can cause arbitrarily large 
variations in x(t)]. Evidently, it is this sensitivity to perturbation or error in r(t) 
that renders the numerical solution of (1) and (2) nontrivial. As a consequence, the 
most recent research in this area has been directed toward developing physically 
acceptable solutions that minimize this sensitivity. Longley [5] proposed replacing 
the ill-posed problem above with a well-posed one by an ad hoc modification of 
the kernel function. The more successful solution of Phillips [6] and Twomey [7] is 
a least-squares procedure which suppresses the large variations in the solution by 
constraining its second derivative. Baker et al. [S] and Hanson [9] suggested 
solutions based on the smoothing available with a direct spectral decomposition 
of an integral operator. 

In this paper we present an approach to the numerical deconvolution problem 
which borrows conceptually from the spectral decomposition methods above but 
which is both applicable to Fredholm and Volterra forms and computationally 
efficient to apply. The procedure involves using the eigensystem of a transformation 
of the discrete convolution operator and is beautifully simple in structure. The 
distinguishing features of the formalism are its ease of computability and its explicit 
characterization of the solution variations due to the errors or noise in r(t). It is 
this characterization that allows one to systematically minimize the extraneous 
variations in constructing an acceptable solution with only crude descriptors of 
its form. 

2. PROBLEM FORMULATION 

The admissible class of functions occurring in (1) and (2) is determined by 
physical possibility. Consequently, we assume that x(t) and r(t) are square 
integrable on the whole line and differentiable to all finite orders, and that their 
Fourier transforms are of bounded support. We call the set of such functions P. 
Since the kernel characterizes a physical integral operator, it is also assumed to 
satisfy these conditions. In the Fredholm form of the convolution integral, this 
kernel is evidently noncausal [that is, k(t - T) is nonzero for t < T]. If the kernel 
is causal, thus vanishing for t < T, we can replace the upper limit in (1) by t to 
give the Volterra form (2). 

A variety of quadrature approximations can be used to establish a discrete, 
finite dimensional analog to these integral operators. Over a finite interval 
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t E [u, b], Eq. (1) can be represented by a convolution summation of the form 

r(n) = i K(n - n’) x(d). (4) 
.n’=--A 

We obtain the sequences {r(n)} and {x(n)} by sampling the continuous function 
at equidistant points in the interval t E [a, b]. (For notational convenience, this 
spacing has been normalized; consequently, A, B, n and 12’ are integers). 

In generating {K(n)} the simplest approximation involves a similar sampling 
of the kernel, that is, 

K(n - n’) = k(n - Ii). (5) 

If the sample spacing is adequately small, consistent with the bandlimits of the 
continuous functions, the representation (4) using (5) will be exact. If we are not 
able to control or specify the sample density, a quadrature form which is quite 
useful and intuitively logical involves picking [5] 

K(n - n’) = [nr-y’+l k(A) dh. 

It should be clear that by simply reducing the sample spacing, the integral 
approximation associated with use of either (5) or (6) can be improved to achieve 
a desired minimum error. 

The convolution summation (4) can be written in the following matric notation: 

T = Kx,l (7) 

where 

r = response vector 

= col[r(-A) r(-A + 1) ‘-+ r(B)], (8) 

x = excitation vector 

= col[x(-A) x(-A + 1) .a. x(B)], (9) 

1 Upper-case boldface letters denote matrices and lower-case boldface letters denote column 
vectors. 
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and 

K = kernel matrix 

K(O) K(-1 

K(l) K(O) 

K(A + B) K(O) 

Now, in the integral transformation defined by (1) and (2), x(t) is said to be 
transformed into r(t). The range of this transform is the set of functions R that 
results from convolution of an admissible kernel with a function x(t) E P. We 
consider only those kernels such that this transformation is one-to-one and unique. 
Thus, the inverse of this transform exists and theoretically allows us to associate 
a given r(t) E R with x(t) E P. In the finite dimensional characterization, Eq. (7), 
the matrix K-l is the discrete analog of the inverse transformation. 

While the pairing of r and x with K-l is formally justifiable, it is of limited 
practical use. This is because, in applications, the accessible response vector 
contains considerable uncertainty or error. This uncertainty arises from the noise 
present in all measurement data and, to a lesser extent, the quadrature error in 
the discretization of (1) and (2). In the presence of this error, (7) becomes 

r + Sr = K(x + Sx) (11) 

where Sr is the error in r and Sx is the error induced in x. Because the 
error sequences in the response are generally nondifferentiable and wideband in 
comparison with {x(n)} and {r(n)>, the accessible response is not in the range set, 
R, of the convolution transformation. Consequently, the excitation x + Sx $ P. 

In formally solving (11) we can see how this occurs: 

x + Sx = K-l(r + Sr). (12) 

It happens in practice that close approximations to r(t) with (7) involving bounded 
smooth kernels, lead to matrices K-l with very large numbers. As a result, Sx turns 
out to be extremely large in norm and wildly oscillatory even for very “small” Sr. 
To demonstrate this behavior, we consider the kernel sequence and excitation- 
response pair shown in Figs. 1 and 2, respectively. Note that here we have taken 
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FIG. 2. Excitation {x(n)} and response {r(n)} [obtained from (7) with A = 0 and B = lOO]. 

I I I I 
0 20 40 60 80 100 

FIG. 1. Kernel sequence (K(n)} [obtained from (6)]. 

I I I I 1 I 
0 20 40 60 80 100 

n 

x(f) = k(t). The response vector was generated according to [7] with the elements 
of K and x as shown. (To obtain the exact excitation vector given this response, 
we would, of course, form the matric product K-4.) We introduce an error of 
1O-6 in the first element of r, that is, 

Sr = col[lO-6, 0, 0 ,...) 01, 

and pair this response to its excitation, x + Sx, according to (11). The resulting 
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excitation is shown in Fig. 3. Judging from its erratic variation and apparent 
instability, this excitation has few of the fundamental properties we normally 
associate with physically real solutions, despite the relatively small error in the 
response vector. This behavior is, of course, quite unsatisfactory and indicates the 
need for a rational approximation procedure in solving (11). 

FIG. 3. Excitation error {8x(n)} due to perturbation of r(0). 

3. SOLUTION BY DECOMPOSITION 

We apply spectral decomposition techniques in developing a constructive 
procedure for solving the noisy quadrature system in (11). The general utility of 
these techniques derives from their classical applicability and convenience in 
constructing approximate solutions. It is the special structure of the kernel matrix K 
which suggests the spectral decomposition that follows. K is a so-called Toeplitz 
matrix [lo] of the general form 

K = (K&z (13) 

i.e., it has equal entries on each of its principal diagonals. Because of this structure 
the system (11) can be also reordered and written in matrix form as 

r + Sr = it(il + Sji). (14) 
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Here, the tilde indicates matrix transposition and the caret indicates the exchange 
of elements in each column about its center. Thus, we have 

K(--A - B) .-. K(-I) K(O) 

. / 

/ / K(1) 

KC- 1) K(O) 
// 

/ 
. K(O) K(1) 1.. W + B> 

, (15) 

and % is just x turned upside down. 

Now, g is a real, symmetric Hankel matrix. As such, it submits to a definitive 
spectral decomposition, one which is both analytically useful and computationally 
convenient. Its eigenvalues {Xi} are real and, for practical purposes, distinct, and 
can be ordered as 

A, > h, > *me > hA+B . 

The eigenvectors associated with different eigenvalues are linearly independent 
and orthogonal, and taken together form a basis. Thus, we can express the 
accessible response in this base as 

A+B 
r + 6r = C (r + Sr, ei) ei . 

i=O 
(16) 

From (14) we have 
h 

f + S^x = (Q-l (r + Sr). 

Plugging (16) into (17) results in 

(17) 

A 

f + & = (Q-l ‘i* (r + Sr, eJ ei 
idI 

where this last relation follows from the interdependence of the eigensystems 

of if and its inverse. Consequently, the solution vector can be written as 

x + sx = c /3&i, (1% 
i=O 
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1 
Pi = x (r + k et) 

= i (6 et) [l + $$$-I. 
(20) 

Evidently, as a formal solution to Eq. (1 l), Eq. (19) suffers from the same 
practical difficulties as Eq. (12). In (19) and (20) however, we have the effect of the 
response Sr explicitly characterized in a form that suggests a rational approach 
to its minimization. It is evident that the error in each term of the eigenvector 
expansion of x + Sx is completely accounted for in (20) by a noise-to-signal 
ratio (Sr, e$)/(r, ei). This error will be objectionable if this ratio is on the order 
of 1.0 or larger, and/or 1 hi I is small. A similar spectral dependency can also be 
inferred from the cumulative error 11 Sx 11 since it can be shown that this norm can 
be bounded (sometimes tightly) by 

1x1 II Sx II < I x lzI II fir Il. (21) 

Thus, it follows that with the above decomposition the main components of Sx 
can, to some extent, be spectrally isolated. 

These considerations lead to the following procedure for developing physically 
acceptable solutions of (11). We form the approximate solution x, by a generalized 
Fourier expansion using the basis {ei}. The coefficients of this expansion are 
obtained by a weighting of the Fourier coefficients in (20). Specifically, we have 

A+B 

x, = 1 W(h,) /Ii&i 
i=O 

(22) 

where {IV(&)} is a weight or penalty sequence. This weighting is used to control 
the behavior of the approximation by minimizing the effects of those terms in the 
expansion which contribute significantly to 6x. Frequently, in applications, these 
terms can be identified by analyzing the measurement system and/or the physics 
involved in the experiment. In any event, the weighting sequence must be specified 
a priori and in the next section we present some candidate weighting schemes that 
we have found effective for this purpose. 

The numerical calculations required in construcing x, in (22) are quite straight- 
forward to implement. The most difficult problem involves computing the eigen- 

system of i. We use an algorithm written by J. H. Wilkinson and others, which 
was specifically designed for handling real-symmetric matrices. It involves a 

reduction of i to a tridiagonal symmetric form using Householder’s method [ 1 l] 
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and the subsequent determination of its eigenvalues and eigenvectors using QL 
transformations [12]. We have found this algorithm suitable for handling quite 
large matrices (A + B M 400). Once the eigensystem is computed, of course, it 
can be stored and used for all deconvolution problems involving that particular 
kernel. 

As we mentioned previously, our decomposition method is similar in spirit to 
that of Baker et al. [8] and Hanson [9]. In contrast to this first method, however, 
our formalism is directly applicable to Volterra and nonsymmetric Fredholm 
forms. As we mentioned previously, solution of Volterra equations (i.e., causal 
kernels) represents a particularly important class of problems. The basis of contrast 
with the second method is fundamentally computational. Our decomposition 
technique involves better conditioned eigensystem computations and requires 
(A + B + 1)2 fewer storage elements. For large dimension problems, these may 
be extremely important considerations. 

4. WEIGHTING SCHEMES AND EXAMPLES OF APPLICATION 

It is an appropriate choice of the weighting sequence in (22) that determines 
the usefulness of x, . In practice, the particular choice of (I+(&)} is generally 
motivated by physical considerations. These have to do with the overall confidence 
one has in the spectral components of r + Sr and the physical acceptability of the 
constructed solution. Both considerations can be accommodated in a relatively 
straightforward manner by picking the elements of the weighting sequence { Wi} 
to be of the general form 

(23) 

This form allows weighting to a wide variety of criteria by virtue of its ease of 
interpretability. 

Below, we present several numerical examples that demonstrate the methodology 
used in selecting this weighting and the application of our formalism for solving 
deconvolution problems. We compared our solutions with those available from 
other integral equation solvers that employ essentially equivalent apriori knowledge 
of the solution. It is important to note that, for the class of problems normally 
encountered in experimental physics (and for the numerical examples considered 
below), the dominate errors in the solutions arise from measurement errors in r 
and not from inaccuracy in the quadrature approximation of (2). This property 
is a determining factor in our solution formalism and is in contrast with much of 
the existing literature on the solution of linear integral equations (see, for example, 
[13-151). 
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Example I 

We first illustrate the application of our deconvolution method by considering 
the Volterra equation formulation of the classic problem introduced by Phillips [6] 
and used in our previous example. In this example, we want to solve (2) with 

x(t) = 6 x k(t) = r [ 
n(t - 3) 1 + cm 3 ] O<t<6, 

(24) 
,o otherwise 

where k(t, T) is a difference kernel. The kernel and excitation sequences are 
generated according to (4) and (6) with A = 0, B = 100, and the sampling 
interval equal to 0.12. As we saw in Fig. 3, the exact solution this system is quite 
sensitive to the presence of errors in r. Following Phillips’ example, we generate 
an error sequence Sr by quantizing or rounding-off the components of r such that 
the maximum value of Sr would be *0.005. This error is shown in Fig. 4. 

With I + Sr in hand, our first step in solving for x, involves computing the eigen- 

sytem of i. The computed eigenvalues are shown in Fig. 5. Now, in this case, the 
ratio I h lm& h lmin , which is a measure of the ill-conditioning or sensitivity of 
the solution to response errors, is on the order of 5 x 10zo. 

In picking the weighting sequence for this example, we assume little a priori 
knowledge of the solution, only that is of finite norm. This involves letting 

Ei = E. (25) 

It is easy to see that this corresponds to picking the weights to discriminate against 

-0.61 I I I I I 
0 20 40 60 SO 100 

FIG. 4. Round-off error {Sr(n)} in the response sequence. 
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-6’ 
0 20 40 60 SO 100 

FIG. 5. Eigenvalues of k for the text Example 1. 

those components associated with the smaller hi . For “large” j hi 1, W, = 1, while 
for “small” ( Ai 1, Wi = 0. We decide in effect what is large and small by assigning 
the constant, E. This weighting is useful in many experimental applications where 
a band-limited response is measured in the presence of wideband or white noise. 

Using (23) and (25), we tried various values of E over the range O-10, forming the 
solution according to (22). The error norm /I x - x, )( was then evaluated for each z. 
The variation of this error norm versus E is shown in Fig. 6. It is characteristic 

FIG. 6. Norm of the solution error [I x - x, 11 for the case of l i = constant. 

of the effect of { Wi} on x, . For small E (all Wi M l), the error in x, is quite large 
because of the noise in the response vector. Conversely, for large E (all W, M 0), 
the large error is a result of the loss of components in x, associated with the larger 
1 Ai I. Between these two extremes lies the optimum choice of E. The sequent { Wi) 
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and the approximate solution x, corresponding to the best E are given in Figs. 7 
and 8, respectively. Apparently, this x, is a close representation of the true 
excitation with its important characteristics (peak value, full-width-at-half-maxi- 
mum, and general bell shape) preserved in the solution. 

We now compare this result with a solution obtained by one of the methods 
proposed for numerically solving analytical integral equations (i.e., those that are 
exactly known). This method is due to Jones [13]. It is a direct, iterative solution 

I I I I 

l.O- 

0.6- 

2- - 

0.4- 

FIG. 7. Optimum weighting sequence { Wi} for E = 0.1. 

1.6 

0 20 40 60 80 100 

FIG. 
Mm. 

8. Approximate solution {x,(n)} corresponding to the weights of Fig. 7 (solid line is 
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of the linear system [ll], particularly well-suited for numerical implementation. 
The solution so obtained is shown in Fig. 9, and it is easy to see that it is a com- 
pletely unacceptable result. The error norm /I x - x, 11 is on the order of 2 x 10s. 
Interestingly, improvement of the approximation error either by decreasing the 
sample spacing or by increasing the order of the quadrature form leads to a more 
unsatisfactory solution (this is due to the increased ill-conditioning of the linear 
system with no corresponding reduction of experimental error in r). 

Example 2 

A desirable feature in any deconvolution procedure should be its ability to use 
additional a priori information in improving the constructed solution. In this 

60 , 

FIG. 9. Solution {x(n) + 6x(n)} obtained with a direct solution: (a) total sequence; (b) first 
65 points (solid line is {x(n)}). 
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example, we consider the problem immediately above and show that, if some 
measure of the smoothness of x is known, an alternative weighting procedure can 
be used, which eliminates most of the random fluctuations seen in Fig. 8. 

This particular weighting involves discriminating against components associated 
with eigenvectors having high variation between elements. We do this by letting 

N-1 

ei = E 1 (e:,, - eji)', 

j=O 
(26) 

where ej” is the jth component of the ith eigenvector. Again, we evaluate this 
weighting for a range of E and show the error behavior in Fig. 10. To the extent that 

the smaller eigenvalues of g correspond to eigenvectors with higher variations, 
this weighting will be somewhat similar to the previous case, although, as is seen 
in Fig. 11 [the optimum {W,}], it is noticeably more discriminate. The solution 
obtained with the { WJ of Fig. 11 is a remarkably faithful replica of x and is shown 
in Fig. 12. An examination of I( x - x, 1) indicates a 50 ‘A reduction in the solution 
error norm over that obtained previously. The elements of Bx are now on the same 
order of magnitude as the quantization errors in r. 

A method of Schmaedeke [16] deals with the solution of (2) in a more general, 
separable Hilbert space setting. For comparison, we treated this numerical example 
using his method. Schmaedeke’s solution form that most closely corresponds to 
the a priori information used here is given (in our notation) by 

x, = (itK + c?D)-l&, (27) 

where D is the product of the adjoint of the first difference operator and the first 
difference operator. The parameter a2 is initially unknown but is iteratively adjusted 

FIG. 10. Norm of solution error II x - x. /I for case of 

E( = c E (e;,, - er’)*. 
j-0 
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FIG. 11. Optimum weighting sequence { W,} for ( = 0.6. 

12. Approximate 

I I I I 
0 20 40 60 SO 100 

" 

solution {x.(n)} corresponding to the weights of Fig. 10 (solid line is 

to ensure that the norm of the first variation of x, satisfies a prescribed value. 
Several iterations were required to find the appropriate ~9. For this solution we 
had I( x - x, I( m 2 x lo-“, which is essentially equivalent to our result above. 

While the error performance measure is directly comparable, the complexity 
of computation involved with implementing the two schemes is considerably 
different. Schmaedeke’s method requires inversion of an A + B + 1 dimension 
matrix for every iteration in determining the correct ~9. In contrast, we need only 
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compute the eigensystem of g and the appropriate inner products once in finding 
the optimum 6. In addition, an examination of the weighting indicates that the 
calculations in forming x, can be further reduced by simply eliminating those terms 
in (22) for which the weight is “essentially” zero. This set of terms can be deter- 
mined by a direct examination of {IV,} and/or the eigensystem of i(. Thus, it is 
clear that computationally the eigenvector expansion is much simpler to use. 

Example 3 

In this example we consider a problem frequently encountered in computational 
physics, that of differentiating a finite set of experimental data. In the continuous 
case, differentiation of a function x(t) is equivalent to solving a convolution equation 
of the form (2) (with the assumption that r(a) = 0), where the kernel k(t) is the 
unit step function. As in the above examples, instability and high sensitivity to 
error characterize the standard differentiation procedures for exact data when used 
with experimental data [17]. 

In applying our solution formalism to the differentiation problem, we take 
x(t) as given in (24) and discretize the integral equation as in Example 1, above. 
The response vector r is formed according to (7) and augmented by an error 
vector Sr. Here, the error sequence is a white noise process, each element of which 
is a realization of a random variable uniformly distributed on the interval [-0.3, 
+0.3]. The finite data set r + 8r which we wish to differentiate is shown in Fig. 13. 
Qualitatively, we would describe this data as being moderately noisy. 

In applying the eigenvector solution formalism to this differentiation problem, 

FIG. 13. Response sequence, c + Sr, to be differentiated. 
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we again assume some a priori knowledge of the smoothness of the derivative. In 
this case we pick 

N-l 
ei = E C (e:,, - 2eji + e:-$, 

i=O 
(2% 

thereby minimizing the contribution to x, in (22) of those components associated 
with eigenvectors having high second differences. An examination of the spectrum 
of the unit step kernel (see Fig. 14) indicates the ratio ) A jm&u/l X (mm is on the 
order of 130. The variation of the error norm as a function of E is shown in Fig. 15, 
and in Fig. 16 we have the optimum weighting sequence. The solution constructed 
with this weighting is given in Fig. 17 is a remarkably faithful replica of the true 

FIG. 14. Eigenvalues of K for the text Example 3. 

fiG. 15. Norm of solution error )I x - x. 11 for the case of 

es = 6 C (ei,, - 2: + e:-,)’ . 
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FIG. 16. Optimum weighting sequence for c = 150. 

derivative. (Numerical experiments with this example, using Gaussian-distributed 
white noise of equal variance, yield sensibly equivalent results.) 

For comparative purposes we now apply a more classical differentiation scheme 
to this example. This scheme is characteristic of the class of integral equation solvers 
in which the inversion of the equation can be performed analytically in closed 
form [18, 191. These inversions are not generally without anomaly because of 
their noise amplification property. Thus, while they are suitable for exact problems, 
they are typically not reliable for handling experimental data. One approach to 
adapting this technique to nonexact problems involves approximating the data by 

FIG. 17. Approximate derivative {X,&J)} corresponding to the weights of Fig. 16 (solid line is 
Mm 
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a set of smooth analytic functions and applying the inversion to this representation. 
The differentiation method that we now demonstrate is structured along these 

lines and is similar to one proposed by Savitzky and Golay [20]. The data are first 
approximated in a least squares sense over a sliding subinterval by a fixed-order 
polynomial. This polynomial is differentiated (the inversion) at the center point 
of the subinterval, to give the estimated value of the derivative at that point. The 
subinterval is then advanced one point and the procedure repeated until the entire 
interval has been transversed. The polynomial approximation is performed by 
using orthogonal polynomials, and its “smoothing” properties are controlled by 
varying the length of the subinterval (i.e., fit interval). 

Applying this technique and adjusting for the optimum fit interval, we obtained 
the estimated derivative in Fig. 18. Its error 11 x - xd 11 = 1.2 is to be compared 
with the estimated derivative of Fig. 17, whose error norm is 4.4. In this case 
superiority of the eigenvector solution is clearly evident. 

FIG. 18. Approximate derivative {x&} obtained with a Savitzlcy/Golay-type algorithm. 

4. CONCLUSION 

We have shown in the above examples that the deconvolution procedure (22) 
leads to useful results with an appropriate choice of e in the above weighting 
schemes. It remains to be shown whether a near-optimum choice of e can be made 
when x is unknown. In this regard, our experience in applying the method to a 
variety of problems may be of interest. We have found that the error behavior 
in Figs. 6, 9, and 14 is typical in that the minimum of 11 x - x, I] is relatively 
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insensitive to variations in E. Thus, while it is clearly important to obtain a “close” 
estimate of the optimum E, the degree of closeness is not crucial. Further, our earlier 
remarks on the behavior of jl x - x, II suggest a rationale we have found satisfactory 
for picking a sufficiently close E. We noted that as E increased past the optimum 
value we eventually began eliminating relevant components of the true solution. 
This effect is essentially an over-smoothing and leads to the observed upturn in 
11 x - x, /I. Because these components are associated with the larger eigenvalues, 
it follows that this effect should be likewise evident in 11 r + Sr - x, 11. In Fig. 19 

3- 
“‘I”, “““I “““/ ‘“““I 

3- 1 
2- : 

2- :- l/r +*r - Kx IIL+ - - --(I 
I- 

I- 

0 ------ -?-- A- ,7.?m* ,,,,I - 0- 

10-3 10-Z 10-l 100 IO' I o-3 10-2 10-l 100 IO' 

1 

n 

(4 

FIG. 19. Variation of solution error norm and 11 r + Sr - Kx, 11 : (a) Example 1, where 
ci = constant = E; (b) Example 2 where 

ci = E 1 (ei,, - e;)‘; and 
i=o 

(c) Example 3, where 

ci = E C (e:,, - 2ei + e:-3’. 
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we show the solution and response errors associated with x, for the three examples 
and see that this is indeed the case. For small E, 11 r + Sr --E-X, 11 is quite small, 
increasing only gradually to the region of optimum E. As E increases further, a 
noticeable increase in this norm occurs, almost concurrent with the increase 
in jl x - x, (1. 

This behavior can be deduced more formally using norm arguments and has 
been experimentally verified by the authors in applications involving both correlated 
and uncorrelated error processes. This is indeed a fortunate circumstance, since 
it allows one to pick a reasonably good estimate of the optimum E by simply 
searching the region immediately preceding the upturn. Some judgment and 
experience may be helpful in settling on a final value for E; however, the selection 
procedure involves only that information which is available in actual applications. 

We note in conclusion that a myriad of useful weighting schemes is of course 
available. We have simply presented three to demonstrate the rationale of their 
selection. Common characteristics of other schemes should be their capacity to 
incorporate practical judgement into the solution formalism and their adaptability 
to the physical problem at hand. 
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